
Intro to
Programming

With python
Fundamentals:

Variables + Operators
Wednesday, February 12 2025 TOH210

Takeaways from last time

Things you should know:

● what an algorithm is, how to think algorithmically
● pseudocode
● computers talk in binary
● we use Python

upcoming schedule
google sheet link

Consider
starting on this
as soon as
possible

Ask questions
during office
hours today

https://docs.google.com/spreadsheets/d/1hblHwD4Wz5WsCPPMq2-dA18E4eylotZE5X_dFZ2GKes/edit?gid=1585090131#gid=1585090131

Project 1 and IDLE+Python guide both up on Moodle!

expression vs literal are videos required?

code block reassignment
was a bit trickyorder of operations, what?

Nope! Just an alternative
format for information

As you see more examples, this will
make more sense. It’ll come up on
HW2, so go to OH or TA if you want an
in-depth explanation

We’ll see more examples
of this during class today

an expression does
operations on literals

‘string’ * 2

Colab workbook
Link: click for access

https://colab.research.google.com/drive/1F5ek_fPMWdbudav1W0krAYJL407FfDFG?usp=sharing

Diana is writing a program to help an apple orchard. She knows that the orchard
gathered in total 42 apples this week, and then sold them in bags of five. She adds
some calculations to her program that she thinks would be helpful.

42 / 5 = 8.4 42 // 5 42 % 5

Apple bagging

Context: There are exactly
8.4 bags of apples in total

Context: There are 2
apples that are unbagged

= 8 = 2

Context: There are 8 full
bags of apples

discussion
workbook

What is Diana calculating when she uses the // and % operators, and what is the

context of that expression in terms of apples or bags of apples?

http://www.youtube.com/watch?v=CH50zuS8DD0

helpful to
visualize
modulus as a
clock

Arithmetic Operators

-
subtraction

7 - 4 = 3

+
addition

7 + 4 = 11

*
multiplication

7 * 4 = 28

/
division

7 / 4 = 1.75

**
exponent

2 ** 3 = 8

%
modulus

(remainder)
5 % 3 = 2

//
floor division

(quotient)
7 // 4 = 1

start

1
2

3

4
5

0

12

() → ** → * / // % → + -

when computing using operators, the order
(precedence) maers (similar to PEMDAS in math)

http://www.youtube.com/watch?v=_W0bSen8Qjg

you can change from one
to another in a process
called casting using int()
and float() functions
which take another data
type as input

float(5) = 5.0

int(3.14) = 3
int(3.9) = 3

int(7/4) = 1

float(7//4)= 1.0

floats ints

/
division

7 / 4 = 1.75

//
floor division

(quotient)
7 // 4 = 1

returns a decimal returns an integer

in Python, numbers are stored as ints (integers, whole
numbers) and floats (decimals, floating point numbers)
and these types are managed automatically

why both? variety of ways numbers are used:
floats are good for calculations
ints are good for counting and iteration

int() also does
not round up!

Another way of
thinking about
this is that it is
unaware of
anything
happening to
the right of a
decimal point

1.75

1

follow along in
workbook to see
this in action

does not round up!

Discussion

Predict the output
1. (1+2)**3
2. 4 + 3 / 8
3. int((4+3)/2)
4. float(19//5)
5. 3*(1//3)
6. 1/3
7. 1.2 - 1

= (3)**3 = 3**3 = 27

= 4 + 0.375 = 4.375

= int(7/2) = int(3.5) = 3

= float(3) = 3.0

= 3*(0) = 0
= 0.333…333

= ???

workbook

http://www.youtube.com/watch?v=_W0bSen8Qjg

1.2 - 1 = 0.1999…96

WHAT!!?!?!

1/3 = 0.333…333
this is not exactly 1/3 but
rather an approximation

WHY? decimal
expansion for 1/3
doesn’t end, but
computers have
finite memory

the exact value of 1.2 isn’t
stored in the computer

WHY? 1.2 has an infinite
binary expansion, but
computers have finite
memory

remember, computers think in binary! so
we need to convert this decimal number
to binary somehow

3.141592 = pi

Variables are
used when we’d
like to store a piece
of data in memory,
so that we can
refer to it later on

pi = 3.141592
radius = 8
area = pi * (radius ** 2)

variable
name

data we’d
like to store

assignment
operator

CAUTION
while we like to share ideas across

disciplines, we need to be careful as
variable and = mean different things

than they do over in math world

pi ← 3.141592 “gets”
namespace objectspace

 pi 3.141592

 radius 8

 area

3.141592 8

201.06176

numbers or strings

Python is kinda smart
if you aempt to use a variable name

that hasn’t been used before Python will
create it automatically (unlike some

other languages)

CAUTION: picky variable names
Python is case-sensitive and will treat all of these variable names as

separate entities. Variable names must start with a letter or
underscore. You can include numbers, but no other punctuation

area Area aRea ar3a

Good variable naming
convention is all lowercase
with underscores if needed
sensible_variable_name

RESERVED WORDS should not
be used for variable names

and
as
assert
break
class
continue
def
del

elif
else
except
exec
finally
for
from
global

if
import
in
is
lambda
not
or
pass

print
raise
return
try
while
with
yield

when these words come
up, the interpreter that
takes your Python code
and converts to machine
code already has a
meaning aached to
these!

data can be stored as numbers using the float and
int types, or as text using the string type

floats intsstrings

“here’s a string” ‘there’s a string’ you can change numbers to
strings in a process called
casting using str() function

str(1) = “1”
str(1.5) = “1.5”

str(int(3.9)) = “3”

int(“hi”) ERROR

float(‘hi’) ERROR

but strings cannot be cast
as float or ints

“potato” - “tato”
 3 + “potato” ERROR

operations
string concatenation

“potato” + str(3)

“potato” + “potato” + “ !” “potatopotato !”

“potato3”

“potato” * 2 “potatopotato”

spacing with
concatenation is
super important!

3

the print function can take strings,
floats, ints, and variables as arguments

the input function deals in strings:
strings as arguments, strings as output

What is your name? Eowyn
Hello Eowyn

name = input(“What is your name? ”)
print(“Hello ”, name)
print(“Hello ” + name)

print(f“The square of {number} is {squared}”)

this is printing with what is
called an f-string. this is

something you do NOT need
to know unless it’s of interest

to you

print(f“Hello {name}”)

number = int(input(“Enter a whole number: ”))
squared = number ** 2
print(“The square of”, str(number), “is”, squared)

Enter a whole number: 2
The square of 2 is 4

note the spaces! super important to
remember, especially for Standard IO!!

Functions so far

Function arguments return value notes

int() float or string int converts argument to int

float() int or string float converts argument to float

str() int or float string converts argument to float

print() text to be displayed None displays argument

input() text prompt for user string

Time for today’s workbook
General workflow:

● Put all name cards face down.
● Start with concept checks, discussing first

with partner and then with table group.
● When done, flip all name cards up and move

onto exercises.

before next time

Finish workbook

Good start on HW 1

http://www.youtube.com/watch?v=4xDzrJKXOOY

